You are hereBlogs / thor's blog / Temporal phase correction of multiple echo T2 magnetic resonance images

Temporal phase correction of multiple echo T2 magnetic resonance images


By thor - Posted on 12 July 2013

We recently published some research in the Journal of Magnetic Resonance, and the source-code is released in the latest version of AnalyzeNNLS.

Graphical abstract for Temporal phase correction of multiple echo T2 magnetic resonance images

Abstract: Typically, magnetic resonance imaging (MRI) analysis is performed on magnitude data, and multiple echo T2 data consist of numerous images of the same slice taken with different echo spacing, giving voxel-wise temporal sampling of the noise as the signals decay according to T2 relaxation. Magnitude T2 decay data has Rician distributed noise which is characterized by a change in the noise distribution from Gaussian, through a transitional region, to Rayleigh as the signal to noise ratio decreases with increasing echo time. Non-Gaussian noise distributions may produce errors in the commonly applied non-negative least squares (NNLS) algorithm that is used to assess multiple echo decays for compartmentalized water environments through the creation of T2 distributions. Typically, Gaussian noise is sought by performing spatial-based phase correction on the MRI data however, these methods cannot capitalize on the temporal information available from multiple echo T2 acquisitions. Here we describe a temporal phase correction (TPC) algorithm that utilizes the temporal noise information available in multiple echo T2 acquisitions to put the relevant decay information in the Real portion of the decay data and leave only noise in the Imaginary portion. We apply this TPC algorithm to create real-valued multiple echo T2 data from human subjects measured at 1.5 T. We show that applying TPC causes changes in the T2 distribution estimates; notably the possible resolution of separate extracellular and intracellular water environments, and the disappearance of the commonly labeled cerebrospinal fluid peak, which might be an artefact observed in many previously published multiple echo T2 analyses.

Temporal phase correction of multiple echo T2 magnetic resonance images